Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Dibromo[(-)-sparteine- $\left.\kappa^{2} N, N^{\prime}\right]$ zinc(II)

Yong-Min Lee, ${ }^{\text {a* }}$ Sung Kwon Kang, ${ }^{\text {b }}$ Young-Inn Kim ${ }^{\text {a }}$ and Sung-Nak Choi ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Pusan 609-735, South Korea, and ${ }^{\text {b }}$ Department of Chemistry, Chungnam National University, Daejeon 305-764, South Korea Correspondence e-mail: yomlee@pusan.ac.kr

Received 27 May 2002
Accepted 8 July 2002
Online 31 July 2002

In the title compound, dibromo[($6 R, 7 S, 8 S, 14 S)-1,3,4,7,7 \mathrm{a}, 8,-$ $9,10,11,13,14,14 \mathrm{a}$-dodecahydro-7,14-methano-2 $\mathrm{H}, 6 \mathrm{H}$-dipyrido-$\left[1,2-a: 1^{\prime}, 2^{\prime}-e\right][1,5]$ diazocine $\left.-\kappa^{2} N, N^{\prime}\right] \operatorname{zinc}(\mathrm{II}),\left[\mathrm{ZnBr}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2}\right)\right]$, the chiral nitrogen-chelating alkaloid (-)- L -sparteine acts as a bidentate ligand, with two bromide ligands occupying the remaining coordination sites, producing a slightly distorted tetrahedral structure. The dihedral angle between the $\mathrm{N}-\mathrm{Zn}-$ N and $\mathrm{Br}-\mathrm{Zn}-\mathrm{Br}$ planes is 82.4 (1) ${ }^{\circ}$. The distortion of the tetrahedral coordination is demonstrated by the fact that the midpoint of the $\mathrm{N} \cdots \mathrm{N}$ line does not lie in the $\mathrm{Br}-\mathrm{Zn}-\mathrm{Br}$ plane, but is tilted towards one of the N atoms by $0.164 \AA$. Similarly, the midpoint of the $\mathrm{Br} \cdots \mathrm{Br}$ line is tilted towards one of the Br atoms by $0.117 \AA$.

Comment

Many structural studies of transition metal(II) complexes with (-)-sparteine have been reported (Choi et al., 1995; Kim et al., 2001; Kuroda \& Mason, 1979; Lee et al., 2000; Lopez et al., 1998), but, to date, relatively little is known about the structural characteristics of the corresponding $\mathrm{Zn}^{\mathrm{II}}$ complexes. The crystal structure of a $1: 1$ adduct of dimethylzinc and (- -sparteine is a rare example (Motevalli et al., 1993). Like other four-coordinate (- -sparteine copper(II) complexes, this adduct is monomeric, with pseudo-tetrahedral coordination at the metal center, and the $\mathrm{N}-\mathrm{Zn}-\mathrm{N}$ bond angle of $80.4(2)^{\circ}$ is the smallest among the $\mathrm{N}-M-\mathrm{N}$ angles found in four-coordinate $(-)$-sparteine metal(II) complexes (Choi et al., 1995; Kim et al., 2001; Kuroda \& Mason, 1979; Lee et al., 2000; Lopez et al., 1998). The title $\mathrm{Zn}^{\text {II }}$ complex, (I), was prepared and its crystal structure determined in order to evaluate the steric effects imposed by a bulky (-)-sparteine ligand and to determine the role of the coordinating anionic ligands and the metal ions in these complexes. It is well known that the crystal-field stabilization effect favors a square-planar coordination geometry for four-coordinate $\mathrm{Cu}^{\mathrm{II}}$ complexes (Figgis, 1966). However, due to the closed-shell electronic structure of $\mathrm{Zn}^{\text {II }}$, the coordination geometry around the $\mathrm{Zn}^{\text {II }}$
center in (I) will be determined solely by the steric effects of the coordinating ligands, and the dihedral angle between the $\mathrm{N}-\mathrm{Zn}-\mathrm{N}$ and $\mathrm{Br}-\mathrm{Zn}-\mathrm{Br}$ planes is expected to be larger than those observed in other (- -sparteine copper(II) complexes.

(I)

All four six-membered rings in the (- --L-sparteine moiety, which is one of three sparteine diastereoisomers, adopt a chair conformation (Fig. 1). The conformation of the coordinated (- -sparteine ligand in (I) consists of one terminal ring folded down over the metal (endo) and a second terminal ring folded back away from the metal (exo), identical to the conformation of the free ligand (Boschmann et al., 1974; Wrobleski \& Long, 1977). The coordination geometry around the metal center in the known four-coordinate $(-)$-sparteine metal(II) complexes is distorted tetrahedral (Choi et al., 1995; Kim et al., 2001; Kuroda \& Mason, 1979; Lee et al., 2000; Lopez et al., 1998). The dihedral angles between the $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ and $X-\mathrm{Cu}-X$ $(X=\mathrm{Cl}$ or O$)$ planes in $\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2}\right)\right]$, $\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2}\right)\right]$ and $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2}\right)\right]$ are $67.0,31.7$ and 45.8°, respectively (Choi et al., 1995; Lopez et al., 1998; Lee et al., 2000). The dihedral angle between the N1-$\mathrm{Zn}-\mathrm{N} 9$ and $\mathrm{Br} 1-\mathrm{Zn}-\mathrm{Br} 2$ planes in (I) is 82.4 (1) ${ }^{\circ}$, so that the geometry around the $\mathrm{Zn}^{\mathrm{II}}$ center is almost ideal tetrahedral. The smaller dihedral angle of 67.0° reported for the corresponding copper(II) dichloride complex can be visualized as a balance between the crystal-field stabilization effect and the steric effect of $(-)$-sparteine.

Another parameter associated with the distortion of the tetrahedron is the 'tilt' of the bidentate $(-)$-sparteine ligand with respect to the $\mathrm{Br} 1-\mathrm{Zn}-\mathrm{Br} 2$ plane. The midpoint of the $\mathrm{N} 1 \cdots \mathrm{~N} 9$ line does not lie on the $\mathrm{Br} 1-\mathrm{Zn}-\mathrm{Br} 2$ plane, but is tilted towards atom N1 by $0.164 \AA(11.2 \%$ of half of the

Figure 1
A view of the molecule of (I), showing the atom-numbering scheme and 30% probability displacement ellipsoids. H atoms have been omitted for clarity.

N1 . . N 9 distance). Similarly, the midpoint of the $\mathrm{Br} 1 \cdots \mathrm{Br} 2$ line is tilted towards atom $\operatorname{Br} 2$ by $0.117 \AA(5.9 \%$ of half of the $\mathrm{Br} 1 \cdots \mathrm{Br} 2$ distance). The $\mathrm{N} 1-\mathrm{Zn}-\mathrm{Br} 1$ and $\mathrm{N} 9-\mathrm{Zn}-\mathrm{Br} 2$ angles are quite similar; however, the $\mathrm{N} 1-\mathrm{Zn}-\mathrm{Br} 2$ and $\mathrm{N} 9-$ $\mathrm{Zn}-\mathrm{Br} 1$ angles differ by more than 10°. These results clearly indicate that the reduction of the dihedral angles by about 8° from the perfect tetrahedral value of 90° in (I) is caused by intramolecular steric interactions between the $(-)$-sparteine moiety and the bromide ions coordinated to the $\mathrm{Zn}^{\mathrm{II}}$ atom.

The $\mathrm{Zn}^{\mathrm{II}}-\mathrm{N}$ bond lengths in (I) (Table 1) are significantly shorter than those found in $\left[\mathrm{Zn}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2}\right)\right][2.222$ (5) and 2.256 (6) \AA; Motevalli et al., 1993] and, consequently, the $\mathrm{N}-\mathrm{Zn}-\mathrm{N}$ bite angle in (I) is larger than the corresponding bite angle of 80.4 (2) ${ }^{\circ}$ found in the dimethylzinc(II) complex. This result strongly suggests that the nature of the coordinating anions in (- -sparteine zinc(II) complexes plays an important role in the ultimate molecular structure of the complexes. The smaller $\mathrm{N}-\mathrm{Zn}-\mathrm{N}$ bite angle and the longer $\mathrm{Zn}-\mathrm{N}$ bond distances found in $\left[\mathrm{Zn}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2}\right)\right]$ can be attributed to the presence of the coordinating methyl ligand, which is a very strong Lewis base and which has a small Cdonor atom. The average $\mathrm{Zn}-\mathrm{C}$ bond distance [2.012 (8) \AA] in $\left[\mathrm{Zn}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2}\right)\right]$ is about $0.35 \AA$ shorter than the average $\mathrm{Zn}-\mathrm{Br}$ bond distance in (I). Assuming that the steric demands of the methyl group and the bromide anion are similar, the elongation of the $\mathrm{Zn}-\mathrm{N}$ bond distances in the (-)-sparteine-dimethylzinc(II) complex is probably caused by the reduction in the Lewis acidity of $\mathrm{Zn}^{\mathrm{II}}$ upon formation of strong $\mathrm{Zn}-\mathrm{C}$ bonds.

Experimental

The title complex was prepared by the direct reaction of zinc(II) bromide with a stoichiometric amount of (- -sparteine in an ethanol-triethylorthoformate ($5: 1 \mathrm{v} / \mathrm{v}$) solution. The resulting colorless precipitate was filtered off, washed with cold absolute ethanol and dried under vacuum. Single crystals of (I) were obtained by recrystallization at room temperature from a dichloromethane-triethylorthoformate ($4: 1 \mathrm{v} / \mathrm{v}$) solution under CCl_{4} vapor.

Crystal data

$\left[\mathrm{ZnBr}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2}\right)\right.$]	Mo $K \alpha$ radiation
$M_{r}=459.57$	Cell parameters from 25
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$	reflections
$a=11.1770$ (14) \AA	$\theta=11.4-12.6^{\circ}$
$b=12.0378$ (18) \AA	$\mu=6.08 \mathrm{~mm}^{-1}$
$c=12.7533$ (9) \AA	$T=293$ (2) K
$V=1715.9$ (4) \AA^{3}	Block, colorless
$Z=4$	$0.40 \times 0.33 \times 0.30 \mathrm{~mm}$
$D_{x}=1.779 \mathrm{Mg} \mathrm{m}^{-3}$	
Data collection	
Enraf-Nonius CAD-4	$R_{\text {int }}=0.029$
diffractometer	$\theta_{\text {max }}=27.5^{\circ}$
Non-profiled $\omega / 2 \theta$ scans	$h=-14 \rightarrow 14$
Absorption correction: ψ scan	$k=-15 \rightarrow 15$
(North et al., 1968)	$l=-16 \rightarrow 16$
$T_{\text {min }}=0.104, T_{\text {max }}=0.161$	3 standard reflections
4912 measured reflections	frequency: 300 min
3928 independent reflections	intensity decay: 1%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0474 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$w R\left(F^{2}\right)=0.104$
$(\Delta / \sigma)_{\max }<0.001$
$S=1.03$
3928 reflections
181 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.69 \mathrm{e}_{\mathrm{A}}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.57 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), 1689 Friedel pairs
Flack parameter $=-0.02(2)$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Zn}-\mathrm{N} 9$	$2.078(5)$	$\mathrm{Zn}-\mathrm{Br} 2$	$2.3580(10)$
$\mathrm{Zn}-\mathrm{N} 1$	$2.086(5)$	$\mathrm{Zn}-\mathrm{Br} 1$	$2.3628(10)$
$\mathrm{N} 9-\mathrm{Zn}-\mathrm{N} 1$	$88.9(2)$	$\mathrm{N} 9-\mathrm{Zn}-\mathrm{Br} 1$	$112.60(14)$
$\mathrm{N} 9-\mathrm{Zn}-\mathrm{Br} 2$	$107.95(14)$	$\mathrm{N} 1-\mathrm{Zn}-\mathrm{Br} 1$	$107.12(13)$
$\mathrm{N} 1-\mathrm{Zn}-\mathrm{Br} 2$	$123.31(14)$	$\mathrm{Br} 2-\mathrm{Zn}-\mathrm{Br} 1$	$114.25(4)$

The absolute configuration was confirmed crystallographically to agree with that expected for $(-)$-sparteine. The positional parameters of the H atoms were calculated geometrically ($\mathrm{C}-\mathrm{H}=0.97-0.98 \AA$) and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This research was supported by the Korean Science and Engineering Foundation (KOSEF project No. R01-2001-000055-0).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1140). Services for accessing these data are described at the back of the journal.

References

Boschmann, E., Weinstock, L. M. \& Carmack, M. (1974). Inorg. Chem. 13, 1297-1300.
Choi, S.-N., Kwon, M.-A., Kim, Y., Bereman, R. D., Singh, P., Knight, B. \& Seff, K. (1995). J. Coord. Chem. 34, 241-252.

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Figgis, B. N. (1966). In Introduction to Ligand Fields. New York: John Wiley and Sons Inc.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Kim, Y.-J., Kim, S.-O., Kim, Y.-I. \& Choi, S.-N. (2001). Inorg. Chem. 40, 44814484.

Kuroda, R. \& Mason, S. F. (1979). J. Chem. Soc. Dalton Trans. pp. 727-730.
Lee, Y.-M., Chung, G., Kwon, M.-A. \& Choi, S.-N. (2000). Acta Cryst. C56, $67-$ 68.

Lopez, S., Muravyov, I., Pulley, S. R. \& Keller, S. W. (1998). Acta Cryst. C54, 355-357.
Motevalli, M., O’Brien, P., Robinson, A. J., Walsh, J. R., Wyatt, P. B. \& Jones, A. C. (1993). J. Organomet. Chem. 461, 5-7.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Wrobleski, J. T. \& Long, G. J. (1977). Inorg. Chem. 16, 704-709.

